# On fixed points of infinite-dimensional generating function

Jiangrui Tan Beijing Normal University Joint work with Mei Zhang (BNU)

The 18th Workshop on Markov Processes and Related Topics

31 July 2023

< □ > < @ > < 注 > < 注 > ... 注

# Outline









# Outline

# 1 Introduction

2 Background

3 Main results

# Ideas of proof

Jiangrui Tan (BNU) On

 Let  $\{ \boldsymbol{X}_i = (X_i^{(1)}, X_i^{(2)}, \cdots); i \geq 1 \}$  be a sequence of random variables with values in  $\mathbb{N}^{\infty}$ . Denote the generating function of  $\boldsymbol{X}_i$  by  $F^{(i)}(\boldsymbol{s}) = \mathbb{E} \boldsymbol{s}^{\boldsymbol{X}_i}$ .

Let  $\mathbf{F}(\mathbf{s}) = (F^{(i)}(\mathbf{s}))_{i \geq 1}$ . We are interested in fixed points set of  $\mathbf{F}$  which is

$$T(\mathbf{F}) = \{ \mathbf{s} \in [0,1]^{\infty} : \mathbf{F}(\mathbf{s}) = \mathbf{s} \}.$$

In this talk, we consider F(s) as an offspring generating function of a Galton-Watson process with a countable set of types (GWP- $\infty$ ). Let  $\{\boldsymbol{X}_i = (X_i^{(1)}, X_i^{(2)}, \cdots); i \ge 1\}$  be a sequence of random variables with values in  $\mathbb{N}^\infty$ . Denote the generating function of  $\boldsymbol{X}_i$  by  $F^{(i)}(\boldsymbol{s}) = \mathbb{E}\boldsymbol{s}^{\boldsymbol{X}_i}$ .

Let  $\mathbf{F}(\mathbf{s}) = (F^{(i)}(\mathbf{s}))_{i \geq 1}$ . We are interested in fixed points set of  $\mathbf{F}$  which is

$$T(\mathbf{F}) = \{ \mathbf{s} \in [0,1]^{\infty} : \mathbf{F}(\mathbf{s}) = \mathbf{s} \}.$$

In this talk, we consider F(s) as an offspring generating function of a Galton-Watson process with a countable set of types (GWP- $\infty$ ).

• A 1-type GWP 
$$\{Z_n; n \ge 0\}$$
 satisfies:

$$Z_n = \sum_{i=1}^{Z_{n-1}} \xi_i$$

where  $\{\xi_i; i > 0\}$  is a sequence of i.i.d. random variables.

Let  $h(s) = \mathbb{E}s^{\xi_1}$ . If  $h'(1) \le 1$ ,  $T(h) = \{1\}$ ; if h'(1) > 1,

 $T(h) = \{q, 1\}$ , where q is the extinction probability which is the unique solution of h(s) = s in (0, 1).

Jiangrui Tan (BNU)

On fixed points of GWP- $\infty$ 

31/07/2023

5 / 38

#### Finite-dimensional cases

• A *d*-type GWP  $\{ \boldsymbol{Z}_n = (Z_n^{(1)}, Z_n^{(2)}, \cdots, Z_n^{(d)}); n \ge 0 \}$  satisfies:

$$m{Z}_n = \sum_{k=1}^d \sum_{i=1}^{Z_{n-1}^{(k)}} m{\xi}_{k,i}.$$

Let  $f_i(\mathbf{s}) = \mathbb{E}\mathbf{s}^{\boldsymbol{\xi}_{i,1}}$  and  $\mathbf{f}(\mathbf{s}) = (f_i(\mathbf{s}))_{1 \leq i \leq d}$ . Denote the mean matrix by  $\mathbf{A} = ((a_{ij}))$  with  $a_{ij} = \frac{\partial f_i}{\partial s_j}(\mathbf{1})$ .

Denote the maximal eigenvalue of  $\boldsymbol{A}$  by  $\rho$ . If  $\rho \leq 1$ ,  $T(\boldsymbol{f}) = \{\mathbf{1}\}$ ; if  $\rho > 1$ ,  $T(\boldsymbol{f}) = \{\boldsymbol{q}, \mathbf{1}\}$ , where  $\boldsymbol{q}$  is the extinction probability which is the unique solution of  $\boldsymbol{f}(\boldsymbol{s}) = \boldsymbol{s}$  in  $(0, 1)^d$ .

# • An infinite-type GWP (Moyal '62, Harris '63) $\{\mathbf{Z}_n = (Z_n^{(1)}, Z_n^{(2)}, \cdots); n \ge 0\}$ satisfies:

$$oldsymbol{Z}_n = \sum_{k=1}^\infty \sum_{i=1}^{Z_{n-1}^{(k)}} oldsymbol{ar{\xi}}_{k,i},$$

where for any k > 0,  $\{\overline{\xi}_{k,i}; i > 0\}$  is a sequence of i.i.d. random variables with values in  $l_1(\mathbb{N})$ , where  $l_1(\mathbb{N}) = \{x \in \mathbb{N}^\infty : \mathbf{1} \cdot x < \infty\}$ . Let  $\mathbf{F}(s) = (F_i(s))_{i \geq 1}$  with  $F_i(s) = \mathbb{E}s^{\overline{\xi}_{i,1}}$ . What about the  $T(\mathbf{F})$ and its relation with the extinction probability?

Jiangrui Tan (BNU)

31/07/2023 7/38

# Outline

# 1 Introduction



3 Main results

# Ideas of proof

Let  $P_i(\mathbf{j}) = \mathbb{P}(\overline{\boldsymbol{\xi}}_{i,1} = \mathbf{j})$ . Then

$$F_i(\boldsymbol{s}) = \sum_{\boldsymbol{j} \in l_1(\mathbb{N})} P_i(\boldsymbol{j}) \boldsymbol{s}^{\boldsymbol{j}}.$$

GWPs- $\infty$  can naturally be interpreted as branching random walks (BRWs) on an infinite graph where the types of particles correspond to the vertices of graph.

GWPs- $\infty$  are of many applications as stochastic models for biological populations (Kimmel '02).

Let 
$$\boldsymbol{M} = ((m_{ij}))$$
 with  $m_{ij} = \frac{\partial F_i}{\partial s_j}(\mathbf{1})$ .

Jiangrui Tan (BNU)

- The associated mean progeny representation graph of M, irreducibility and connectivity. Assume non-singularity in each irreducible class henceforth.
- Constructing GWP- $\infty$  to deal with stochastic models on an infinite graph. See Bertacchi and Zucca (2009) for edge-breading BRW.

The set of types to be infinite gives rise to three main challenges:

- First, as the mean progeny matrix *M* has infinite dimension, one has to look for a replacement to the spectral radius as an extinction criterion;
- (2) Second, the concept of extinction has to be defined carefully: when there are infinitely many types, it is possible for every type to eventually disappear while the whole population itself explodes;
- (3) Third, one needs to determine how to compute the extinction probability vector q which now has infinitely many entries.

The set of types to be infinite gives rise to three main challenges:

- First, as the mean progeny matrix *M* has infinite dimension, one has to look for a replacement to the spectral radius as an extinction criterion;
- (2) Second, the concept of extinction has to be defined carefully: when there are infinitely many types, it is possible for every type to eventually disappear while the whole population itself explodes;

< 4 **⊡** ► <

11 / 38

(3) Third, one needs to determine how to compute the extinction probability vector q which now has infinitely many entries.

The set of types to be infinite gives rise to three main challenges:

- First, as the mean progeny matrix *M* has infinite dimension, one has to look for a replacement to the spectral radius as an extinction criterion;
- (2) Second, the concept of extinction has to be defined carefully: when there are infinitely many types, it is possible for every type to eventually disappear while the whole population itself explodes;
- (3) Third, one needs to determine how to compute the extinction probability vector q which now has infinitely many entries.

Jiangrui Tan (BNU)

The reciprocal  $\tau^{-1}$  of convergence radius  $\tau$  of  $\sum_{k\geq 0} r^k (\mathbf{M}^k)_{ij}$  is often used to replace the spectral radius of  $\mathbf{M}$  in finite-type case, which is also called convergence norm of  $\mathbf{M}$ . The solutions  $\mathbf{v}$  and  $\mathbf{u}$  of  $\tau \mathbf{v}\mathbf{M} = \mathbf{v}, \tau \mathbf{M}\mathbf{u} = \mathbf{u}$  are often called invariant measure and vector. In infinite-dimensional cases,  $\mathbf{v}$  and  $\mathbf{u}$  may not exists or  $\mathbf{v} \cdot \mathbf{u} = \infty$ .

#### Ergodic property in types for GWP- $\infty$

#### Ergodic property for infinite matrix (Seneta '81)

If the irreducible matrix M with convergence radius  $\tau$ , satisfying

- $\sum_{k>0} \tau^k (\mathbf{M}^k)_{ij}$  diverges:  $\tau$ -recurrent;
- $\sum_{k>0} \tau^k (\mathbf{M}^k)_{ii}$  converges:  $\tau$ -transient.

If a  $\tau$ -recurrent matrix **M** satisfies for some positive integers (i, j) and then for all,

- $\lim_{k\to\infty} \tau^k (\boldsymbol{M}^k)_{ij} > 0$ :  $\tau$ -positive recurrent;
- $\lim_{k \to \infty} \tau^k (\mathbf{M}^k)_{ij} = 0: \tau$ -null recurrent.  $k \rightarrow \infty$

A (10) < A (10) </p>

The ergodic property of GWP- $\infty$  in the typeset refers to the ergodic property of M (Sagitov '13).

Seneta (1981):

- If and only if GWP- $\infty$  is transient, v and u do not exist;
- If and only if GWP-∞ is null recurrent, v and u exist but v · u = ∞;
- If and only if GWP-∞ is positive recurrent, *v* and *u* exist and *v* · *u* < ∞, moreover lim<sub>n→∞</sub> τ<sup>n</sup>M<sup>n</sup> = uv.

14 / 38

For a BRW on an infinite graph with initial configuration given by a single particle at a fixed vertex i, there are two kinds of survival:

- weak (or global) survival—the total number of particles in the graph is positive for all time;
- strong (or local) survival-the number of particles in vertex *i* is not eventually 0.

#### Extinction probability for GWP- $\infty$

Given a typeset  $\mathcal{T} \subset \mathbb{N}^+ = \{1, 2, 3, \cdots\}$ , we can define the local extinction probability  $q(\mathcal{T}) = (q^{(i)}(\mathcal{T}))_{i \geq 1}$  as

$$q^{(i)}(\mathcal{T}) = \mathbb{P}(\lim_{n \to \infty} \sum_{l \in \mathcal{T}} Z_n^{(l)} = 0 | \mathbf{Z}_0 = \mathbf{e}_i).$$

- Global extinction probability:  $q = q(\mathbb{N}^+)$ ;
- Partial extinction probability:

 $\tilde{q} = \mathbb{P}(\{\text{Extinction for all finite typesets}\})$ . In irreducible case,  $q(A) = \tilde{q}$  for any finite typeset A.

16 / 38

Given a typeset  $\mathcal{T} \subset \mathbb{N}^+ = \{1, 2, 3, \cdots\}$ , we can define the local extinction probability  $q(\mathcal{T}) = (q^{(i)}(\mathcal{T}))_{i \geq 1}$  as

$$q^{(i)}(\mathcal{T}) = \mathbb{P}(\lim_{n \to \infty} \sum_{l \in \mathcal{T}} Z_n^{(l)} = 0 | \mathbf{Z}_0 = \mathbf{e}_i).$$

- Global extinction probability:  $q = q(\mathbb{N}^+)$ ;
- Partial extinction probability:

 $\tilde{q} = \mathbb{P}(\{\text{Extinction for all finite typesets}\})$ . In irreducible case,  $q(A) = \tilde{q}$  for any finite typeset A.

э.

# Challenge (3)

- For any typeset  $\mathcal{T} \subset \mathbb{N}^+$ ,  $F(q(\mathcal{T})) = q(\mathcal{T})$ .
- If  $\inf_i q^{(i)} > 0$ , then (1)  $\mathbb{P}_i(|\mathbf{Z}_n| \to 0) + \mathbb{P}_i(|\mathbf{Z}_n| \to \infty) = 1$ ; (Jagers '92) (2)  $\lim_{n\to\infty} \mathbf{F}_n(\mathbf{s}) = \mathbf{q}$  for any  $\mathbf{s}$  with  $\inf_i s_i < 1$ , where  $F_n^{(i)}(\mathbf{s}) = \mathbb{E}_i \mathbf{s}^{\mathbf{Z}_n}$ . (Spataru '89)
- Assume the process is irreducible. If and only if  $\tau^{-1} \leq 1$ ,  $\tilde{q} \leq 1$ . If  $\tau^{-1} > 1$ , then q < 1. (Bertacchi and Zucca '09)

Recall  $T(\mathbf{F})$  is the set of fixed points of  $\mathbf{F}(\cdot)$ . Define the extinction probability set by  $Q = \{ \mathbf{q}(\mathcal{T}) : \mathcal{T} \subset \mathbb{N}^+ \}.$ 

It is well-known that in finite-type cases,  $q = \tilde{q}$ . Either  $Q = T(F) = \{1\}$  (in subcritical and critical case) or  $Q = T(F) = \{q, 1\}$ (in supercritical case).

What about the relations between Q and  $T(\mathbf{F})$  in infinite-type case?

Jiangrui Tan (BNU)

Bertacchi and Zucca (2020) summarized the main known relations between Q and  $T(\mathbf{F})$  in infinite-type case.

- $Q \subset T(\mathbf{F}), \ \tilde{\mathbf{q}} = \max\{Q\}, \ \mathbf{q} = \min\{Q\}.$
- There are examples for: (1) Q is uncountable; (2) Q is finite and |Q| > 2 while T(F) is uncountable. (Spataru '89, Bertacchi and Zucca '17)
- Assume the process is irreducible and quasi-transitive. If q({i}) < 1 for some i, then Q = {q, 1}. If q({i}) = 1 for all i, Q can be uncountable. T(F) is unknown in both cases.</li>
- In Lower Hessenberg GWP- $\infty$ , there are four cases for Q and  $T(\mathbf{F})$ .

31/07/2023

19 / 38

э.

Braunsteins and Hautphenne (2017) proved the correctness of the conjecture in Lower Hessenberg GWP- $\infty$ , which assume type *i* particles can only produce type  $j \leq i+1$  particles.



**Figure:** Visualizatin for continuum of fixed points (B-H '17)

Jiangrui Tan (BNU)

On fixed points of  $GWP-\infty$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで 31/07/2023

20 / 38

**Open questions** (Bertacchi and Zucca '20):

- If there is any possibility for  $|Q| < |T(f)| < \infty$ ?
- If there is any possibility for Q and  $T(f) \setminus Q$  are both infinite?
- Given a typeset A, how to locate q(A) in Q or  $T(\mathbf{F})$ ?

**Conjectures** (Bertacchi and Zucca '20, Braunsteins and Sophia '20):

- Q (same for  $T(\mathbf{F})$ ) is either finite or uncountable.
- If  $q < \tilde{q}$ , there are continuums in Q and T(F), with minimal q and maximal  $\tilde{q}$ .

< 4<sup>3</sup> ► <

Bertacchi et al. (2022) resolved part of these questions.

- **1.** There are examples for any number of extinction probability vectors in irreducible cases.
- **2.** If  $q^{(i)}(\{i\}) = q^{(i)}$  for any *i*, then  $Q = T(\mathbf{F})$ .
- **3.** In irreducible case, there is no fixed point between  $\tilde{q}$  and **1**;
- 4. In irreducible case, if  $\sup_{i} \tilde{q}^{(i)} < 1$ , then  $\boldsymbol{q} = \tilde{\boldsymbol{q}}$  and  $Q = T(\boldsymbol{F}) = \{\boldsymbol{q}, \boldsymbol{1}\}.$
- 5. Sufficient and necessary conditions for  $q^{(i)}(A) < q^{(i)}(B)$  for two typesets A and B.

(日) (周) (日) (日) (日)

# Outline

# 1 Introduction

2 Background





Jiangrui Tan (BNU)

On fixed points of GWP- $\infty$ 

31/07/2023 23 / 38

< 17 >

æ

Consider a GWP- $\infty$  { $Z_n$ ;  $n \ge 0$ } in which the generating function  $F(s) = (F^{(1)}(s), F^{(2)}(s), \cdots)$  has the form as

$$F^{(i)}(s) = \sum_{j_1, j_2, \dots \ge 0} P(j_1, j_2, \dots) \prod_{k=1}^{\infty} s_{i+k-1}^{j_k},$$

where  $\mathbf{s} = (s_1, s_2, \cdots)$  and  $P(j_1, j_2, \cdots)$  represents the probability of a particle of type i gives  $j_k$  offspring of type i + k - 1 for  $k \ge 1$  respectively. Denote the mean matrix of  $\{\mathbf{Z}_n; n \ge 0\}$  by  $\mathbf{M} = ((m_{ik}))$  where

$$m_{ik} = \frac{\partial F^{(i)}}{\partial s_k} (\mathbf{1}).$$

31/07/2023

24 / 38

Jiangrui Tan (BNU)

Braunsteins and Hautphenne (2017) showed the relations between Q and  $T(\mathbf{F})$  in Lower Hessenberg GWP- $\infty$ , which assume type i particles can only produce type  $j \leq i+1$  particles.

In this model, type *i* particles can only produce type  $j \ge i$  particles. What bout the relations between Q and  $T(\mathbf{F})$ ?

For  $k \geq 1$ , define

$$M_k = \frac{\partial F^{(1)}}{\partial s_k}(\mathbf{1}) = m_{1k}$$
 and  $M = \sum_{k \ge 1} M_k$ .

#### Assumptions:

- A1: For any  $k \ge i > 0$ , there exists a positive integer n such that  $M_{ik}^n > 0$ .
- **A2:**  $P(\mathbf{0}) > 0$  and  $\mathbb{P}(|\mathbf{Z}_1| > 1) > 0$ .
- **A3:**  $M_1 < 1$  and  $M < \infty$ .

< 47 ▶ <

#### Theorem (Tan and Zhang 23+)

If  $M \leq 1$ , then  $Q = T(\mathbf{F}) = \{\mathbf{1}\}$ . If M > 1 and  $\sum_{i=1}^{\infty} M_i M^{1-i} > 1$ , then  $T(\mathbf{F})$  has at least countably many fixed points while  $Q = \{q\mathbf{1}, \mathbf{1}\}$ , where q < 1 is an extinction probability.

Jiangrui Tan (BNU)

For an infinite-dimensional generating function

$$F^{(1)}(\boldsymbol{s}) = \sum_{\boldsymbol{j} \in l_1(\mathbb{N})} P(\boldsymbol{j}) \boldsymbol{s}^{\boldsymbol{j}},$$

if there exists x (except q1 and 1) such that for any initial component i,

$$F^{(1)}(x_i, x_{i+1}, \cdots) = x_i.$$

The answer is positive and there exist at least countably infinitely many  $\boldsymbol{x}$  with  $(1 - x_i)/(1 - x_{i+1}) \rightarrow c$  (> 1).

Jiangrui Tan (BNU)

31/07/2023 28 / 38

# Outline

# 1 Introduction

2 Background

3 Main results



Jiangrui Tan (BNU)

On fixed points of  $GWP-\infty$ 

31/07/2023 29 / 38

< 🗇 🕨

æ

Let G(s) = 1 - F(1 - s) and assume M > 1. Briefly speaking, we intend to find a sequence of infinite vectors  $\{\boldsymbol{y}_n; n \ge 1\}$  such that there exists  $\boldsymbol{y} \in (0, 1)^{\mathbb{N}^+}$  with

$$|G^{(i)}(\boldsymbol{y}_n) - G^{(i)}(\boldsymbol{y})|, |G^{(i)}(\boldsymbol{y}_n) - y_n^{(i)}| \text{ and } |y_n^{(i)} - y^{(i)}|$$

converge to 0 respectively for any  $i \ge 1$ . Then by triangle inequality,  $|G^{(i)}(\boldsymbol{y}) - y^{(i)}| = 0$  for any i.

Jiangrui Tan (BNU)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

#### Ideas of proof

At first, we make a paraphrasing for  $F^{(1)}(s)$ .

Let  $h_0 = P(\mathbf{0})$  and  $h_i$   $(i \ge 1)$  be the probability that the offspring of a type 1 particle has the maximal type of *i*, that is,

$$h_i = \sum_{\substack{j_1, \cdots, j_{i-1} \ge 0 \\ j_i > 0}} P(j_1, \cdots, j_i, 0, 0, \cdots).$$

Define the k-dimensional probability generating function

$$f_k(s_1, \cdots, s_k) = \sum_{\substack{j_1, \cdots, j_{k-1} \ge 0 \\ j_k > 0}} \frac{P(j_1, \cdots, j_k, 0, \cdots)}{h_k} \prod_{i=1}^k s_i^{j_i}.$$

Then

$$F^{(1)}(s) = h_0 + \sum_{k=1}^{\infty} h_k f_k(s_1, \cdots, s_k).$$

Jiangrui Tan (BNU)

On fixed points of  $GWP-\infty$ 

From this paraphrasing we can use the following lemma to calculate 1 - F(1 - s).

#### Lemma (Joffe '67)

For any finite-type generating function L(s) and its corresponding mean matrix  $M_0$ , it holds that

$$1 - L(s) = (M_0 - E(s))(1 - s),$$

where  $\mathbf{0} \leq \mathbf{E}(\mathbf{s}) \leq \mathbf{M}_0$  elementwise,  $\mathbf{E}(\mathbf{s})$  is non-increasing in  $\mathbf{s}$  (with respect to the partial order induced by  $\leq$ ) and tends to  $\mathbf{0}$  as  $\mathbf{s} \rightarrow \mathbf{1}$ .

< □ ▶ < □ ▶ < □ ▶ < □ ▶</p>

Then we can prove that there exists a positive number  $\gamma < 1$ which is actually the solution to the equation  $\sum_{i=1}^{\infty} M_i s^{i-1} = 1$ , such that for any  $t \in \mathcal{H}$ , we have  $G(t) \in \mathcal{H}$ , where

$$\mathcal{H} = \{ \boldsymbol{x} : \forall \ i > 0, x^{(i)} \in (0, 1), x^{(i)} > x^{(i+1)} \text{ and } \lim_{i \to \infty} \frac{x^{(i+1)}}{x^{(i)}} = \gamma \}.$$

Find an arbitrary vector  $\boldsymbol{y}_0 \in \mathcal{H}$ . We can replace the front components of  $\boldsymbol{y}_0$  by iterating on  $\boldsymbol{G}(\boldsymbol{s})$  and retain the tail components to obtain a sequence  $\{\boldsymbol{y}_n; n \geq 0\}$ . It is clear that  $\boldsymbol{y}_n \in \mathcal{H}$  and  $\boldsymbol{G}(\boldsymbol{y}_n) \in \mathcal{H}$  for any n. Next, we prove that  $|\boldsymbol{G}(\boldsymbol{y}_n) - \boldsymbol{y}_n| \to 0$  as  $n \to \infty$ . Finally, we show that  $\boldsymbol{y}_n$  has a nondegenerating limit (pointwisely).

≡ nar

▲ 御 ▶ ▲ 重 ▶

The current researches for GWP- $\infty$  can be classified in three aspects:

- Consider a generic GWP- $\infty$  to get universal criterion for Q,  $T(\mathbf{F})$  (Bertacchi et al. '22);
- Consider the GWP-∞ with special transition probability, such as lower Hessenberg GWP-∞ and linear fraction GWP-∞ (Braunsteins '19, Sagitov '13);
- Consider the case of τ-recurrent, expand classical theorems in GWP to GWP-∞ (Moy '67, Vatutin '22).

#### Reference

- Tan J R, Zhang M. Fixed points of infinite-dimensional generating function. arXiv:2307.02981, 2023.
- Athreya K B, Ney P E. *Branching Processes*. Springer Berlin Heidelberg, 1972.
- Bertacchi D, Zucca F. Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes. *Journal of Statistical Physics*, 134:53-65, 2009.
- Braunsteins P, Hautphenne S. Extinction in lower Hessenberg branching processes with countably many types. Annals of Applied Probability, 29(5):2782-2818, 2019.

Moyal J E. Multiplicative population chains. Pro. Roy. Soc. London. Series A, Math.Phy.Sci., 266(1327):518-526, 1962.

Jiangrui Tan (BNU)

On fixed points of GWP- $\infty$ 

31/07/2023

#### Reference

- Bertacchi D, Zucca F. Branching random walks with uncountably many extinction probability vectors. *Brazilian Journal of Probability and Statistics*, 34(2):426-438, 2020.
- Bertacchi D, Braunsteins P, Hautphenne S, et al. Extinction probabilities in branching processes with countably many types: a general framework. *ALEA*, *Lat. Am. J. Probab. Math. Stat.*, 19: 311-338, 2022.
- Kimmel M, Axelrod D E. *Branching Processes in Biology*. Springer, New York, 2002.
  - Sagitov S. Linear-fractional branching processes with countably many types. Stochastic Processes and Their Applications, 123(8):2940–2956, 2013.

Jiangrui Tan (BNU)

- Moy S. Extensions of a limit theorem of Everett, Ulam and Harris on multitype Branching processes to a branching process with countably many types. Annals of Mathematical Statistics, 38(4):992-999, 1967.
- Braunsteins P, Hautphenne S. The probabilities of extinction in a branching random walk on a strip. *Journal of Applied Probability*, 57(3):811-831, 2020.
- Joffe A. On multitype branching processes with  $\rho < 1$ . Journal of Mathematical Analysis and Applications, 19(3):409-430, 1967.
- Seneta E. Non-negative Matrices and Markov Chains. Springer-Verlag New York, 1981.

Jiangrui Tan (BNU)

<br/>

# Thank you!

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ 三目 めんの